Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
config.yamlos module to read environment variables:yamlCopy code# General environment settings
environment: development # Options: development, staging, production
# AI Agent configuration
axion:
agent:
id: 1 # Unique ID for the agent
role: "manager" # Agent role (e.g., worker, coordinator)
max_tasks: 10 # Maximum tasks the agent can handle
# LLM Integration
llm:
provider: "openai" # Supported providers: openai, anthropic, ollama
base_url: "https://api.openai.com"
model: "gpt-4"
api_timeout: 10 # API call timeout in seconds
retry_attempts: 3 # Number of retries for failed requests
# Swarm Intelligence Configuration
swarm:
redis:
host: "localhost" # Redis server hostname
port: 6379 # Redis server port
consensus_threshold: 3 # Minimum votes for swarm consensus
# Blockchain Integration
blockchain:
solana:
rpc_url: "https://api.mainnet-beta.solana.com"
wallet_path: "/path/to/solana-wallet.json"
ethereum:
rpc_url: "https://mainnet.infura.io/v3/${ETH_RPC_KEY}" # Use environment variables for security
# Logging and Debugging
logging:
level: "INFO" # Options: DEBUG, INFO, WARNING, ERROR, CRITICAL
file: "logs/axion.log"
rotate_logs: true # Enable log file rotationyamlCopy codeenvironment: production
swarm:
redis:
host: "prod-redis.example.com"
password: "securepassword123"pythonCopy codeimport os
env = os.getenv("AXION_ENVIRONMENT", "development")
config_file = f"config.{env}.yaml"bashCopy codeAXION_LLM_PROVIDER=anthropic
AXION_SWARM_REDIS_PASSWORD=securepassword123
ETH_RPC_KEY=your_infura_project_keyyamlCopy codeblockchain:
ethereum:
rpc_url: "https://mainnet.infura.io/v3/${ETH_RPC_KEY}"bashCopy codeAXION_ENVIRONMENT=productionbashCopy codepython main.py --config=config.production.yamlpythonCopy codeimport os
ethereum_rpc = os.getenv("ETH_RPC_KEY")config.yamlfrom src.swarm.advanced_swarm_behavior import Swarm
swarm = Swarm(num_agents=10)
swarm.simulate(iterations=5)from src.blockchain.blockchain_manager import BlockchainManager
blockchain = BlockchainManager()
contract_address = blockchain.deploy_contract(abi, bytecode)from src.utils.multi_modal_handler import MultiModalHandler
multi_modal = MultiModalHandler()
result = multi_modal.process_text("Analyze this document")from src.utils.knowledge_graph import KnowledgeGraph
graph = KnowledgeGraph()
graph.add_concept("Agent", {"role": "manager"})from src.integrations.ipfs_communication import IPFSCommunication
ipfs = IPFSCommunication()
ipfs.send_message("Message from Node A")from src.utils.reinforcement_learning import QLearning
rl_agent = QLearning(state_size=5, action_size=3)
action = rl_agent.choose_action(current_state)modules:
redis: enabled
neo4j: disabled
ipfs: enabledpythonCopy codeimport redis
import json
import random
# Connect to a Redis server
redis_client = redis.StrictRedis(host='localhost', port=6379, decode_responses=True)
# AI agent definitions
class Agent:
def __init__(self, name):
self.name = name
def make_decision(self, data):
# Simulate a decision-making process
decision = random.choice(["approve", "reject", "abstain"])
return {"agent": self.name, "decision": decision, "input": data}
# Swarm manager
class Swarm:
def __init__(self, agents):
self.agents = agents
def execute_task(self, task_data):
results = []
for agent in self.agents:
result = agent.make_decision(task_data)
results.append(result)
redis_client.rpush("task_results", json.dumps(result))
return results
# Initialize agents
agents = [Agent("Agent_A"), Agent("Agent_B"), Agent("Agent_C")]
# Create a swarm
swarm = Swarm(agents)
# Execute a task
task_data = {"task": "Analyze market data", "priority": "high"}
results = swarm.execute_task(task_data)
# Retrieve and process results from Redis
stored_results = redis_client.lrange("task_results", 0, -1)
processed_results = [json.loads(res) for res in stored_results]
print("Task Results:", processed_results)arduinoCopy codeTask Results: [
{'agent': 'Agent_A', 'decision': 'approve', 'input': {'task': 'Analyze market data', 'priority': 'high'}},
{'agent': 'Agent_B', 'decision': 'reject', 'input': {'task': 'Analyze market data', 'priority': 'high'}},
{'agent': 'Agent_C', 'decision': 'approve', 'input': {'task': 'Analyze market data', 'priority': 'high'}}
]pythonCopy codeclass AI_Agent:
def __init__(self, name, skills):
self.name = name
self.skills = skills
self.tasks = []
def assign_task(self, task):
self.tasks.append(task)
print(f"Task '{task}' assigned to {self.name}")
# Define agents
agent_1 = AI_Agent("Agent_Alpha", ["data_analysis", "model_training"])
agent_2 = AI_Agent("Agent_Beta", ["data_cleaning", "visualization"])
# Dynamic task allocation based on agent skills
tasks = [
{"name": "Clean Dataset", "required_skill": "data_cleaning"},
{"name": "Train Model", "required_skill": "model_training"},
]
for task in tasks:
if task["required_skill"] in agent_1.skills:
agent_1.assign_task(task["name"])
elif task["required_skill"] in agent_2.skills:
agent_2.assign_task(task["name"])
# Output current task assignments
print(f"{agent_1.name}'s Tasks: {agent_1.tasks}")
print(f"{agent_2.name}'s Tasks: {agent_2.tasks}")arduinoCopy codeTask 'Clean Dataset' assigned to Agent_Beta
Task 'Train Model' assigned to Agent_Alpha
Agent_Alpha's Tasks: ['Train Model']
Agent_Beta's Tasks: ['Clean Dataset'] # Execute a text-based task
agent.execute_text_task("Summarize the document content.")
# Process an image with text prompts
agent.execute_image_task("path/to/image.png", "Describe the scene in detail.")
# Handle an audio input
agent.execute_audio_task("path/to/audio.mp3")# Add a concept to the knowledge graph
agent.add_knowledge("Artificial Intelligence", {"field": "Computer Science"})
# Link concepts
agent.add_knowledge_relationship("Artificial Intelligence", "Machine Learning", "includes")
# Query the graph
knowledge = agent.query_knowledge("Machine Learning")
print(knowledge)
# Visualize the graph
agent.visualize_knowledge_graph("output/knowledge_graph.png")# Push a task to the queue
agent.push_task_to_queue("Analyze market trends")
# Pull and process a task
task = agent.pull_task_from_queue()
print(f"Processing task: {task}")# Send a message to another agent
agent.send_message(recipient_id=2, message="Initiate data preprocessing.")
# Retrieve messages
messages = agent.receive_messages()
for msg in messages:
print(f"Message from Agent {msg['sender_id']}: {msg['message']}")
# Delegate a task
agent.delegate_task(recipient_id=3, task_description="Train the machine learning model.")# Check Solana wallet balance
balance = agent.get_sol_balance()
print(f"Solana balance: {balance}")
# Transfer SOL
agent.send_sol(recipient_pubkey="RecipientPubKey", amount=1.5)
# Check Ethereum wallet balance
eth_balance = agent.get_eth_balance("0xRecipientAddress")
print(f"Ethereum balance: {eth_balance}")
# Transfer ETH
agent.send_eth(sender_key="PrivateKey", recipient_address="0xRecipientAddress", amount_ether=0.25)# Upload a file to IPFS
cid = agent.upload_to_ipfs("path/to/file.txt")
print(f"File uploaded to IPFS with CID: {cid}")
# Download a file from IPFS
agent.download_from_ipfs(cid="QmCID", output_path="path/to/downloaded_file.txt")# Optimize task execution
state = agent.get_environment_state()
reward = agent.execute_action("action_name")
agent.optimize_task_execution(state)# Propose a task to the swarm
agent.propose_task_to_swarm("Conduct AI-powered data analysis")
# Vote on a task
agent.vote_on_task(proposal_id="proposal-123")
# Check if consensus has been reached
consensus = agent.check_consensus()
print(f"Consensus reached: {consensus}")from axion.agents.ai_agent import AIAgent
# Initialize an AI Agent
agent = AIAgent(agent_id=1, role="Data Analyst", provider="openai", base_url="https://api.openai.com")
# Add knowledge and relationships
agent.add_knowledge("Blockchain", {"field": "Decentralized Systems"})
agent.add_knowledge_relationship("Blockchain", "Ethereum", "example_of")
# Propose a task and vote
agent.propose_task_to_swarm("Optimize transaction speed")
agent.vote_on_task("proposal-456")
# Push and process tasks
agent.push_task_to_queue("Generate market insights")
task = agent.pull_task_from_queue()
print(f"Processing: {task}")
# Send and retrieve messages
agent.send_message(2, "Start analyzing recent trends.")
messages = agent.receive_messages()
for msg in messages:
print(f"Message: {msg}")
# Integrate with blockchain and IPFS
eth_balance = agent.get_eth_balance("0xYourAddress")
print(f"Ethereum Balance: {eth_balance}")
file_cid = agent.upload_to_ipfs("path/to/document.pdf")
print(f"File stored on IPFS: {file_cid}")bashCopy codepython -m ensurepip --upgradebashCopy codesudo apt-get install redisbashCopy codegit clone https://github.com/<your-organization>/axion-framework.git
cd axion-frameworkbashCopy codepython -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activatebashCopy codepip install -r requirements.txtbashCopy code# Blockchain
SOLANA_WALLET_PATH=/path/to/solana-wallet.json
ETHEREUM_WALLET_PRIVATE_KEY=your_ethereum_private_key_here
# Redis
REDIS_HOST=localhost
REDIS_PORT=6379
# MongoDB
MONGODB_URI=mongodb://localhost:27017bashCopy coderedis-serverbashCopy codepython examples/swarm_simulation.pybashCopy codemongodbashCopy codeneo4j startbashCopy codepip install -r requirements.txtproposal_id = swarm.propose_task("Analyze data trends")swarm.vote(proposal_id)
consensus = swarm.get_consensus()
print("Consensus:", consensus)swarm.assign_tasks()from axion.swarm.advanced_swarm_behavior import Swarm
# Initialize a swarm with 10 nodes
swarm = Swarm(10)
# Propose tasks
swarm.propose_task("Analyze market trends")
swarm.propose_task("Optimize delivery routes")
# Simulate swarm behavior
swarm.simulate(5) # Simulate 5 rounds of task executionswarm.simulate(3) # Simulate 3 rounds of task executionfrom axion.integrations.blockchain import BlockchainClient
# Initialize the Ethereum client
eth_client = BlockchainClient(network="ethereum", private_key="your-private-key")
# Deploy a smart contract
contract_address = eth_client.deploy_contract(abi="contract_abi.json", bytecode="contract_bytecode")
print(f"Contract successfully deployed at: {contract_address}")
# Interact with the contract
balance = eth_client.call_contract_function(
contract_address=contract_address,
abi="contract_abi.json",
function_name="getBalance",
params={}
)
print(f"Fetched contract balance: {balance}")from axion.integrations.storage import IPFSClient
# Initialize the IPFS client
ipfs_client = IPFSClient()
# Upload a file
file_path = "data/sample_data.txt"
cid = ipfs_client.upload_file(file_path)
print(f"File uploaded to IPFS. CID: {cid}")
# Retrieve the file using its CID
output_path = "downloads/retrieved_data.txt"
ipfs_client.download_file(cid, output_path=output_path)
print(f"File successfully retrieved and saved at: {output_path}")from axion.integrations.redis_queue import RedisTaskQueue
# Initialize the Redis task queue
task_queue = RedisTaskQueue()
# Add a task to the queue
task_description = {"task_id": 101, "description": "Process user data"}
task_queue.push_task(task_description)
print("Task added to the queue.")
# Pop a task from the queue
task = task_queue.pop_task()
print(f"Processing task: {task}")from axion.integrations.knowledge_graph import KnowledgeGraph
# Initialize the knowledge graph
knowledge_graph = KnowledgeGraph()
# Add concepts and relationships
knowledge_graph.add_concept("Agent", {"role": "worker"})
knowledge_graph.add_concept("Task", {"type": "data processing"})
knowledge_graph.add_relationship("Agent", "Task", "executes")
# Query the graph
results = knowledge_graph.query("MATCH (a:Agent)-[:executes]->(t:Task) RETURN a, t")
print("Knowledge Graph Query Results:", results)
# Visualize the graph
knowledge_graph.visualize_graph(output_path="visualizations/knowledge_graph.png")
print("Knowledge graph visualization saved.")import requests
# Define the API endpoint
api_url = "https://api.open-meteo.com/v1/forecast"
# Fetch weather data
response = requests.get(api_url, params={"latitude": 40.7128, "longitude": -74.0060, "current_weather": True})
if response.status_code == 200:
weather_data = response.json()
print(f"Current weather data: {weather_data}")
else:
print("Failed to fetch data from API.")from axion.collaboration.agent_framework import CollaborationFramework
# Initialize the Collaboration Framework
collaboration = CollaborationFramework()
# Delegate a task from Agent 1 to Agent 2
collaboration.delegate_task(
sender_id=1,
recipient_id=2,
task_description="Analyze IPFS data and generate a report"
)# Send a message from Agent 1 to Agent 2
collaboration.send_message(sender_id=1, recipient_id=2, message="Start processing task.")
# Agent 2 retrieves messages
messages = collaboration.receive_message(recipient_id=2)
for msg in messages:
print(f"Received message from Agent {msg['sender_id']}: {msg['message']}")from axion.utils.redis_task_queue import RedisTaskQueue
# Initialize the Redis Task Queue
redis_queue = RedisTaskQueue()
# Add a new task to the queue
redis_queue.push_task({
"agent_id": 1,
"task_description": "Perform sentiment analysis on dataset."
})
# Retrieve a task from the queue
task = redis_queue.pop_task()
print(f"Task retrieved: {task}")from axion.collaboration.agent_framework import CollaborationFramework
from axion.utils.redis_task_queue import RedisTaskQueue
# Initialize components
collaboration = CollaborationFramework()
redis_queue = RedisTaskQueue()
# Step 1: Delegate tasks
collaboration.delegate_task(
sender_id=1,
recipient_id=3,
task_description="Train machine learning model on dataset A"
)
# Step 2: Send instructions via messages
collaboration.send_message(
sender_id=1,
recipient_id=3,
message="Please start the training and provide regular updates."
)
# Step 3: Add tasks to the queue for distribution
redis_queue.push_task({
"agent_id": 4,
"task_description": "Run model validation on dataset B."
})
# Step 4: Process queued tasks
task = redis_queue.pop_task()
print(f"Processing task: {task}")
# Step 5: Retrieve messages for updates
messages = collaboration.receive_message(recipient_id=3)
for msg in messages:
print(f"Message for Agent 3: {msg['message']}")from axion.governance import ProposalManager
# Initialize the proposal system
proposal_manager = ProposalManager()
# Submit a proposal to enhance resource distribution
proposal_manager.create_proposal(
proposal_id="task-101",
description="Optimize agent communication protocols",
expiration_time=3600 # 1 hour expiry
)# Agents evaluate and vote
proposal_manager.vote("task-101", "yes") # Agent A votes "yes"
proposal_manager.vote("task-101", "no") # Agent B votes "no"# Retrieve and analyze results
results = proposal_manager.check_results("task-101")
print("Voting Outcome:", results)
# Output Example: {"votes": {"yes": 3, "no": 2}, "status": "approved"}from axion.governance import ProposalManager
# Step 1: Initialize the governance system
proposal_manager = ProposalManager()
# Step 2: Submit multiple proposals
proposal_manager.create_proposal(
proposal_id="task-201",
description="Deploy new reconnaissance agents",
expiration_time=7200 # 2 hours expiry
)
proposal_manager.create_proposal(
proposal_id="policy-301",
description="Implement energy-saving mode during idle periods",
expiration_time=3600 # 1 hour expiry
)
# Step 3: Agents vote on the proposals
proposal_manager.vote("task-201", "yes")
proposal_manager.vote("task-201", "yes")
proposal_manager.vote("policy-301", "no")
# Step 4: Retrieve and display voting results
results_task = proposal_manager.check_results("task-201")
results_policy = proposal_manager.check_results("policy-301")
print("Task Proposal Results:", results_task)
print("Policy Proposal Results:", results_policy)from axion.integrations.ipfs_communication import IPFSCommunication
# Initialize IPFS Communication
ipfs = IPFSCommunication()
# Send a message and receive the unique hash
message = "Hello, decentralized world!"
hash = ipfs.send_message(message)
print(f"Message sent successfully. Hash: {hash}")# Retrieve the message using the hash
retrieved_message = ipfs.retrieve_message(hash)
print(f"Retrieved message: {retrieved_message}")# Sending multiple messages
messages = [
"Message 1: Decentralized systems are the future.",
"Message 2: IPFS ensures fault-tolerant communication.",
"Message 3: SynaptiQ Systems enables seamless agent collaboration."
]
hashes = []
for message in messages:
hash = ipfs.send_message(message)
print(f"Sent message with hash: {hash}")
hashes.append(hash)
# Retrieving all messages
for hash in hashes:
retrieved_message = ipfs.retrieve_message(hash)
print(f"Retrieved: {retrieved_message}")from axion.rl.q_learning import QLearning
# Define state and action space sizes
state_size = 5
action_size = 3
# Initialize Q-Learning agent
rl_agent = QLearning(state_size, action_size)
print("Reinforcement Learning agent initialized with:")
print(f"State space size: {state_size}, Action space size: {action_size}")# Define the initial state (e.g., a 5-dimensional vector representing environment attributes)
state = [1, 0, 0, 1, 0]
# Choose an action based on the current state
action = rl_agent.choose_action(state)
print(f"Selected Action: {action}")
# Define a function to simulate task execution
def execute_action(action):
if action == 0:
print("Executing Task A")
return 2 # Reward for Task A
elif action == 1:
print("Executing Task B")
return 3 # Reward for Task B
elif action == 2:
print("Executing Task C")
return 1 # Reward for Task C
return 0 # No reward for invalid actions
# Execute the action and receive a reward
reward = execute_action(action)
# Get the next state after executing the action
next_state = [0, 1, 1, 0, 1] # Simulated new state
# Update the Q-table
rl_agent.update_q_table(state, action, reward, next_state)
print("Q-Table updated with the latest action-reward feedback.")
# Decay the exploration rate
rl_agent.decay_exploration()
print("Exploration rate decayed to focus on exploitation of learned strategies.")# Simulating multiple episodes of optimization
for episode in range(10):
print(f"--- Episode {episode + 1} ---")
# Simulated state (replace with actual state logic)
state = [1 if i == (episode % 5) else 0 for i in range(5)]
print(f"Current State: {state}")
# Choose action
action = rl_agent.choose_action(state)
print(f"Chosen Action: {action}")
# Execute action and get reward
reward = execute_action(action)
# Get next state (placeholder logic)
next_state = [0, 1, 1, 0, 1] if episode % 2 == 0 else [1, 0, 0, 1, 0]
print(f"Next State: {next_state}")
# Update Q-Table
rl_agent.update_q_table(state, action, reward, next_state)
# Decay exploration rate
rl_agent.decay_exploration()
print(f"Updated Exploration Rate: {rl_agent.exploration_rate}\n")from axion.blockchain.blockchain_manager import BlockchainManager
# Initialize the Blockchain Manager
blockchain = BlockchainManager(network="ethereum")
# Define ABI and Bytecode
abi = [
{
"constant": True,
"inputs": [],
"name": "getValue",
"outputs": [{"name": "", "type": "uint256"}],
"payable": False,
"stateMutability": "view",
"type": "function",
}
]
bytecode = "0x608060405234801561001057600080fd5b506040516101003803806101008339810180604052..."
# Deploy the contract
contract_address = blockchain.deploy_contract(abi=abi, bytecode=bytecode)
print(f"Smart contract deployed at: {contract_address}")# Call a function on the deployed contract
result = blockchain.call_contract_function(
contract_address=contract_address,
abi=abi,
function_name="getValue"
)
print(f"Smart contract returned: {result}")transaction_hash = blockchain.log_task(
sender_keypair="path/to/solana_keypair.json",
task_description="Analyze weather patterns",
task_result="Task completed successfully"
)
print(f"Task logged on blockchain. Transaction hash: {transaction_hash}")export SOLANA_WALLET_PATH=/path/to/solana-wallet.jsonexport ETHEREUM_WALLET_PRIVATE_KEY=your_private_key_hereimport os
# Load Solana wallet path
solana_wallet_path = os.getenv("SOLANA_WALLET_PATH")
print(f"Solana Wallet Path: {solana_wallet_path}")
# Load Ethereum private key
ethereum_private_key = os.getenv("ETHEREUM_WALLET_PRIVATE_KEY")
print("Ethereum Private Key Loaded.")from axion.swarm.advanced_swarm_behavior import Swarm
# Initialize a swarm with 10 agents
swarm = Swarm(10)
# Simulate initial behavior
swarm.simulate(3)
# Trigger breeding for a specific agent
parent_agent = swarm.nodes[0]
new_agent = swarm.breed_agent(parent_agent, role="explorer")
if new_agent:
print(f"New agent created with ID: {new_agent.id}, Role: {new_agent.role}")
# Simulate further behavior with the updated swarm
swarm.simulate(5)from axion.integrations.mongodb_client import MongoDBClient
# Initialize MongoDB client
mongo_client = MongoDBClient(database="AxionDB")
doc_id = mongo_client.insert_document("agents", {"name": "Agent-1", "role": "worker", "status": "active"})
print(f"Agent metadata stored with ID: {doc_id}")
# Query agent metadata
agent_data = mongo_client.query_documents("agents", {"status": "active"})
print(f"Active agents: {agent_data}")
mongo_client.close_connection()from axion.integrations.neo4j_client import Neo4jClient
# Connect to Neo4j
neo4j_client = Neo4jClient(uri="bolt://localhost:7687", user="neo4j", password="password")
# Add nodes and relationships
agent1_id = neo4j_client.create_node("Agent", {"name": "Agent-1", "role": "worker"})
agent2_id = neo4j_client.create_node("Agent", {"name": "Agent-2", "role": "manager"})
neo4j_client.create_relationship(agent1_id, agent2_id, "reports_to")
# Query the graph
relationships = neo4j_client.query_relationships("MATCH (a:Agent)-[r:reports_to]->(b:Agent) RETURN a, b")
print(f"Agent relationships: {relationships}")
neo4j_client.close()from axion.integrations.qdrant_client import QdrantClient
# Initialize Qdrant client
qdrant_client = QdrantClient(collection_name="embeddings")
# Create a collection and add vectors
qdrant_client.create_collection(vector_size=128)
qdrant_client.add_vector(
vector=[0.12, 0.45, 0.67, 0.89],
payload={"name": "Document A", "type": "report"}
)
# Perform semantic search
results = qdrant_client.search(vector=[0.12, 0.45, 0.67, 0.88], top=3)
print(f"Search results: {results}")from axion.integrations.sqlite_client import SQLiteClient
# Initialize SQLite client
sqlite_client = SQLiteClient(database="local_logs.db")
# Create a table
sqlite_client.create_table(
"task_logs",
columns="id INTEGER PRIMARY KEY, task_description TEXT, status TEXT, timestamp DATETIME DEFAULT CURRENT_TIMESTAMP"
)
# Insert a log
sqlite_client.insert_data(
table="task_logs",
columns="task_description, status",
values="'Analyze market trends', 'completed'"
)
# Query logs
logs = sqlite_client.query_data("task_logs", "*")
print(f"Task logs: {logs}")
sqlite_client.close()from src.utils.knowledge_graph import KnowledgeGraph
# Initialize the Knowledge Graph
knowledge_graph = KnowledgeGraph()
# Add a concept
knowledge_graph.add_concept("AI Agent", {"role": "worker", "status": "active"})
# Add a relationship between concepts
knowledge_graph.add_relationship("AI Agent", "Swarm", "belongs_to")# Query a concept
result = knowledge_graph.query_concept("AI Agent")
print(f"Attributes of AI Agent: {result}")
# Query relationships
relationships = knowledge_graph.query_relationships("AI Agent")
print(f"Relationships of AI Agent: {relationships}")# Visualize the graph
knowledge_graph.visualize_graph(output_path="knowledge_graph.png")
print("Knowledge graph saved as knowledge_graph.png")# Save task results locally
task_result = "AI successfully analyzed the dataset."
with open("results/task_result.txt", "w") as file:
file.write(task_result)
# Upload task results to IPFS
from src.utils.ipfs_client import IPFSClient
ipfs_client = IPFSClient()
cid = ipfs_client.upload_file("results/task_result.txt")
print(f"Task result uploaded to IPFS with CID: {cid}")from src.swarm.swarm_consensus import SwarmConsensus
swarm = SwarmConsensus(agent_id=1)
# Propose and log a task
proposal_id = swarm.propose_task("Optimize AI model training")
consensus = swarm.get_consensus()
if consensus:
print(f"Consensus reached for proposal: {consensus}")
with open("logs/consensus_log.txt", "a") as log_file:
log_file.write(f"Proposal {proposal_id} reached consensus: {consensus}\n")from src.utils.knowledge_graph import KnowledgeGraph
# Initialize and add data to the knowledge graph
knowledge_graph = KnowledgeGraph()
knowledge_graph.add_concept("AI Agent", {"role": "worker"})
knowledge_graph.add_relationship("AI Agent", "Swarm", "belongs_to")
# Save the knowledge graph as an image
knowledge_graph.visualize_graph(output_path="outputs/knowledge_graph.png")
# Export the graph data as JSON
knowledge_graph.export_to_json("outputs/knowledge_graph.json")# Generate a decentralized report
report_content = {
"task": "Data analysis",
"result": "Successful",
"timestamp": "2024-12-28T12:00:00Z"
}
# Save the report locally
import json
with open("outputs/report.json", "w") as file:
json.dump(report_content, file)
# Upload the report to IPFS
cid = ipfs_client.upload_file("outputs/report.json")
print(f"Report uploaded to IPFS with CID: {cid}")from src.utils.blockchain_manager import BlockchainManager
# Initialize the Blockchain Manager
blockchain = BlockchainManager()
# Log a task on the blockchain
task_description = "Analyze solar energy consumption trends."
task_result = "Task completed successfully."
transaction_hash = blockchain.log_task(
sender_keypair="path/to/solana_wallet.json",
task_description=task_description,
task_result=task_result
)
print(f"Task logged on blockchain. Transaction hash: {transaction_hash}")# Securely store wallet paths and private keys
export SOLANA_WALLET_PATH=/path/to/solana-wallet.json
export ETHEREUM_WALLET_PRIVATE_KEY=your_private_key_hereopenssl aes-256-cbc -in sensitive_data.json -out sensitive_data.enc -k secretpasswordopenssl aes-256-cbc -d -in sensitive_data.enc -out sensitive_data.json -k secretpasswordnode.send_decentralized_message("Hello, world!")node.retrieve_decentralized_message("QmHashHere")scheduler.add_task(1, "Process data", priority=5)scheduler.assign_task(swarm.nodes)proposal_id = swarm.propose_task("Analyze data trends")swarm.vote(proposal_id)cid = ipfs_client.upload_file("data/task_data.json")
print(f"Uploaded to IPFS with CID: {cid}")ipfs_client.retrieve_file(cid, output_path="downloaded_data.json")from src.swarm.advanced_swarm_behavior import Swarm
swarm = Swarm(10)
swarm.simulate(5)# Send a message
node.send_decentralized_message("Task completed successfully.")
# Retrieve a message
message = node.retrieve_decentralized_message("QmHashHere")
print(f"Retrieved message: {message}")scheduler.add_task(1, "Optimize reinforcement learning parameters", priority=5)
scheduler.assign_task(swarm.nodes)export SOLANA_WALLET_PATH=/path/to/solana-wallet.json
export ETHEREUM_WALLET_PRIVATE_KEY=your_private_key_hereconsensus = swarm.get_consensus()
print(consensus)